

Ministero dell'Istruzione Ufficio Scolastico Regionale per il Lazio Istituto di Istruzione Superiore VIA DELLE SCIENZE Liceo "G. Marconi" • Scientifico - Classico - Linguistici

Liceo "G. Marconi" • Scientifico - Classico - Linguistico Via della Scienza e della Teorica, s.n.c. - 00034 Colleferro (RM)

11/05/2024

SIMULAZIONE ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

MATEMATICA

Il candidato risolva uno dei due problemi e risponda a 4 quesiti

Durata massima della prova: 5 ore.

PROBLEMA 1

Considera la famiglia di funzioni $f_k : \mathbf{R} \to \mathbf{R}$ definite da:

$$f_k(x) = \frac{x^2 - x + k}{x^2 + 1}$$

dove k è un parametro reale.

- Dimostra che, per qualsiasi valore reale di k, il grafico della funzione f_k ammette due punti distinti in cui la tangente è parallela all'asse x e che il prodotto delle ascisse di tali punti è -1. Determina poi il valore di k per cui la tangente al grafico della funzione nel suo punto d'intersezione con l'asse y passa per il punto di coordinate (-1, 2).
- Indica con f₁ la funzione corrispondente al valore di k = 1 determinato al punto precedente.
 Esegui lo studio completo della funzione f₁, individuando anche i punti di flesso, e tracciane il grafico. Dimostra che il grafico della funzione f₁ è simmetrico rispetto a un
- Calcola, se esistono, i seguenti limiti:

punto, di cui devi specificare le coordinate.

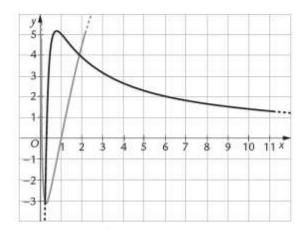
a.
$$\lim_{x \to 0} \frac{1 - f_1(x)}{\sin x}$$
 b. $\lim_{x \to 0^+} \frac{1 - f_1(x)}{\ln x}$ **c.** $\lim_{x \to +\infty} [f_1(x) - \sin x]$ **d.** $\lim_{x \to +\infty} [x \cdot f_1(x) - \sin x]$

L'area della regione di piano, contenuta nel primo quadrante, limitata dal grafico della funzione f_1 e dal suo asintoto orizzontale è finita o infinita? Giustifica la risposta. Considera poi la funzione:

$$g(x) = \begin{cases} |f_1(x) - 1| & \text{se } |x| \le h \\ 0 & \text{se } |x| > h \end{cases} \quad \text{con } h > 0$$

tracciane il grafico e determina per quale valore di h rappresenta una densità di probabilità.

Ministero dell'Istruzione Ufficio Scolastico Regionale per il Lazio Istituto di Istruzione Superiore VIA DELLE SCIENZE Liceo "G. Marconi" • Scientifico - Classico - Linguistico Via della Scienza e della Teorica, spr.c. - 00034 Colleferro (RM)



Tel.: 06-121126040-41 - C.F.: 95017680588 - www.marconicolleferro.edu.lt e-mail: rmis02400l@istruzione.it - P.E.C.: rmis02400l@pec.istruzione.it

PROBLEMA 2

Considera una funzione del tipo: $f(x) = x(a \ln^2 x + b \ln x + c)$, con a, b, c parametri reali.

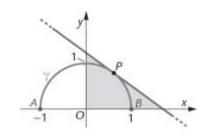
- Determina il valore dei parametri, sapendo che la funzione presenta un estremo relativo per $x = e^{\frac{5}{2}}$, di valore 9e 2, e un punto di flesso a tangente obliqua per $x = e^{\frac{5}{4}}$.
- Verificato che la funzione cercata è $f(x) = x(2\ln^2 x + \ln x 1)$, studiala fino a tracciare il suo grafico, determinando in particolare eventuali asintoti, altri punti di estremo, di cui è richiesta la classificazione, altri punti di flesso, per i quali è richiesto il calcolo della tangente inflessionale.
- Il grafico della funzione individua, con l'asse delle ascisse, due regioni finite di piano. Calcola la loro area.
- La seguente figura mostra i grafici delle funzioni y = f'(x) e y = f''(x). Associa ciascuna funzione al corrispondente grafico, motivando la tua scelta.

Senza ricorrere al calcolo di primitive, verifica che:

- il grafico disegnato in grigio forma con l'asse x e l'asse y una regione di piano illimitata di area finita, di cui è richiesto il valore;
- il grafico disegnato in nero forma con l'asse x e l'asse y una regione di piano illimitata di area infinita.

Ministero dell'Istruzione Ufficio Scolastico Regionale per il Lazio Istituto di Istruzione Superiore VIA DELLE SCIENZE iceo "G. Marconi" • Scientifico - Classico - Linguistici

Liceo "G. Marconi" • Scientifico - Classico - Linguistico
Via della Scienza e della Teorica, sanc. - 00034 Colleferro (RM)

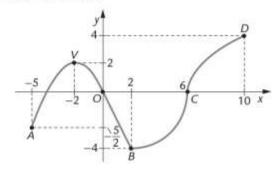

QUESITI

1.

Dimostra che la funzione $f(x) = e^x + \arctan x$ è invertibile. Detta g la sua inversa, calcola g'(1) e scrivi l'equazione della retta tangente al grafico di g nel suo punto di ascissa 1.

2.

La figura mostra una semicirconferenza γ con centro nell'origine e raggio 1 e un suo punto P del primo quadrante. Individua le coordinate di P in modo che l'area evidenziata, delimitata dagli assi cartesiani e dalla tangente in P a γ , sia minima.



3.

Data la funzione $y = \frac{\ln x}{x}$, determina per quale valore di k, con k > 0, la retta tangente al grafico della funzione nel suo punto di ascissa k passa per l'origine.

4.

Considera la funzione $f: [-5, 10] \to \mathbf{R}$ che ha il grafico in figura. L'arco \widehat{AO} appartiene a una parabola con asse verticale, di vertice V; il tratto OB è un segmento; l'arco \widehat{BC} è un quarto di circonferenza e l'arco \widehat{CD} appartiene a una parabola di vertice C avente, come asse di simmetria, l'asse x.

- a. Studia la continuità e la derivabilità della funzione f.
- **b.** Determina il valore medio della funzione f nell'intervallo [0, 10].

5.

Dimostra che l'equazione $x^3 - 3x^2 + 4x - 1 = 0$ ammette una sola soluzione in **R**. Più in generale, per quali valori di k l'equazione $x^3 - 3x^2 + kx - 1 = 0$ ammette una sola soluzione in **R**?

Ministero dell'Istruzione Ufficio Scolastico Regionale per il Lazio Istituto di Istruzione Superiore VIA DELLE SCIENZE iceo "G. Marconi" • Scientifico - Classico - Linguistici

Liceo "G. Marconi" • Scientifico - Classico - Linguistico
Via della Scienza e della Tecnica, son.c. - 00034 Colleferro (RM)

6.

- Considera la regione $\bf D$ di piano limitata dal grafico della funzione $y=\frac{4}{x}$, dall'asse x e dalle rette di equazioni x=2 e x=k, con k>2. Determina per quale valore di k il volume del solido generato da una rotazione completa della regione $\bf D$ intorno all'asse x è un quarto del volume del solido ottenuto da una rotazione completa della regione $\bf D$ intorno all'asse y.
- 7. Considera la funzione $f(x) = \ln(x+1) + \int_2^x \frac{2t^2 + 3t 3}{2t(t-1)} dt$ e dimostra che è strettamente crescente per valori di x maggiori di x.
- 8. Data la funzione

$$f(x) = a\sqrt[3]{x} + \frac{b}{\sqrt[3]{x^2}}$$

determinare i valori dei parametri reali a e b in modo tale che il grafico presenti un punto di flesso in F(1;6). Stabilire inoltre se la funzione ammetta o meno punti stazionari e, in caso affermativo, se ne indichi la loro natura.